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Abstract. We have calculated the quantum conductance of single-walled carbon nanotube (SWNT) waveg-
uide by using a tight binding-based Green’s function approach. Our calculations show that the slow conduc-
tance oscillations as well as the fast conductance oscillations are manifestations of the intrinsic quantum
interference properties of the conducting SWNTs, being independent of the defect and disorder of the
SWNTs. And zigzag type tubes do not show the slow oscillations. The SWNT electron waveguide is also
found to have distinctly different transport behavior depending on whether or not the length of the tube is
commensurate with a (3N + 1) rule, with N the number of basic carbon repeat units along the nanotube
length.

PACS. 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and
nanocrystals – 73.23.-b Electronic transport in mesoscopic systems – 73.63.Fg Nanotubes

Carbon nanotubes have induced a great deal of interests
since their discovery in 1991 by Iijima et al. [1]. One of
their most fascinating aspects is that their electronic and
transport properties are directly and sensitively related to
their geometry structures, which are uniquely determined
by the circumference vector, �c = n1 �a1 + n2 �a2, where �a1

and �a2 are graphite sheet lattice translation vectors. The
pair of integer numbers (n1, n2) defines the radius and chi-
rality of each tube. Tubes of (n, 0) and (n, n) are nonchi-
ral, while others are chiral with their hexagonal carbon
atoms are arranged in a helical fashion. All (n, n) arm-
chair nanotubes are metals, and the (n1, n2) tubes with
the radii >3.5 Å are semimetallic if (n1 −n2) is a nonzero
multiple of three. The rest are semiconductors with band
gaps that scale roughly as the reciprocal of the tube ra-
dius [2–5].

Carbon nanotubes can be either metals or semicon-
ductors, depending on their helicity and diameter. This
remarkable property suggests that it may be possible in
the future to construct an all-carbon nanotube-based na-
noelectronic devices. To explore this exciting possibility,
there has been a considerable amount of theoretical and
experimental researches on the electronic properties of the
carbon nanotubes. Progress has been rapid and a number
of prototypical devices for laboratory studies have already
been created. Their ability to sustain a ballistic electronic
current has been experimentally demonstrated [6–9], pro-
viding the basis for using nanotubes as efficient metallic
wires.

a e-mail: lfyzz@yahoo.com.cn

The behavior of traditional electronic devices can be
understood in term of the classical diffusive motion of
electrons. As the size of a device becomes comparable
to the electron coherence length, the quantum interfer-
ence between electron waves becomes increasingly impor-
tant, leading to dramatic changes in the device properties.
This classical-to-quantum transition in the device behav-
ior suggests the possibility of using quantum coherence
in nanometer-sized electronic elements. Molecular electron
devices are promising candidates for realizing such device
elements because the electronic motion in molecules is in-
herently quantum mechanical and it can be modified by
well defined chemistry. An other example of a coherent
electronic devices is the Fabry-Perot electron resonator
based on individual SWNTs with near-perfect ohmic con-
tacts to electrodes [7,8], in which the nanotubes act as
coherent electron wave guides with the resonant cavity
formed between the two nanotube-electrode interfaces,
and the coupling between the two propagating modes
caused by electron scattering at the nanotube-electrode
interfaces is important.

Within the Landauer formalism, the ballistic conduc-
tance of a perfect system is proportional to the number
of conducting channels at the Fermi energy. In the case of
an isolated metallic SWNT, two bands derived from the
π-bonding and π-antibonding orbitals between neighbor-
ing carbon atoms cross at the Fermi level (EF ), leading
to a perfect transmission in the case of ideal electrical
contact, and corresponding two units of quantum conduc-
tance G = 2G0. Of importance in a transport experiment
is the coupling of the SWNT to metallic leads, and in
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the case of imperfect electrical contacts, the elastic scat-
tering on interfaces affects the transmission coefficients
and thereby reduces the conductance, which then is no
longer precisely quantized. For SWNTs, the conductance
G = T × 2G0 = 4Te2

h with transmission probability up
to T ∼ 0.5−0.6 has been observed in transport measure-
ments [10,11].

Recently, however, a highly transparent contact of
T ∼ 1 has been made in the individual metallic SWNT
at low temperature [8], which presents a clear evidence of
quantum transport as expected from theory. In addition,
rapid conductance oscillations are observed to be super-
imposed on slow fluctuation background. The authors as-
cribed the fast oscillations to the confinement-induced dis-
crete “particle-in-a-box” electronic states, the additional
slow modulated envelope of the fast oscillations and the
deep dip to the localized states due to defects or chem-
ical species adsorbed on SWNTs. However, the defects
on SWNT contradicts the fact of the maximum quan-
tum conductance limit 2G0 observed in their experiments,
which is implication of the perfect structure for the carbon
nanotubes.

In this paper, we have calculated the quantum conduc-
tance of the near transparent contacted SWNTs by using
a tight binding-based Green’s function approach that is
particularly suitable for realistic calculations of the elec-
tronic transport properties in extended systems [12]. Our
calculations show that conducting SWNTs with perfect
ohmic contacts contributes two conductance channels as
predicted by previous theoretical works; In the fine con-
tacted systems, the slow oscillated fluctuation background
is an intrinsic quantum coherent properties in all metallic
nanotube resonators except zigzag ones, which are inde-
pendent of the localized states due to the imperfections.
Both rapid and slow conductance fluctuations are quan-
tum interference phenomena, but the former comes from
linear terms in the energy dispersion relations of metallic
nanotubes, while the latter from nonlinear ones [13]. And
the ratio between the slow and fast oscillation periods re-
late only to the nanotube length and the gate-voltage used
in experiments, independent of the coupling strength be-
tween nanotube and the electric contact. And the SWNT
electron waveguide is found to have distinctly different
transport behavior depending on wether or not the length
of the tube is commensurate with a (3N +1) rule, with N
the number of basic carbon repeat units along the nan-
otube length.

The geometrical structure under consideration is com-
posed of two leads(left and right) plus SWNT, with all
three parts being metallic SWNTs of the same chirality,
which can be described by a tight-binding model with one
π electron per atom. The tight-binding Hamiltonian of the
system is written as

H = −Vppπ

∑

〈ij〉
a†

iaj + h.c., (1)

where the sum over i, j is restricted to the nearest-neighbor
site, and Vppπ = 2.75 eV [14]. Within this theory, the
defect-free nanotubes have complete electron-hole symme-

try with their Fermi levels at zero. The layers of carbon
atoms between left and right leads are chosen to be 813
for armchair tubes and 939 for zigzag tubes (the length of
nanotube L = 200 nm) and half of that to show the length
effect. For simplicity, On-site energies are set to zero,
all nearest-neighbor hopping parameters are assumed to
be Vppπ except those at contacts, which are taken to be
α · Vppπ with 0 < α < 1. Consequently, electrons will be
slightly scattered at interfaces and the system behave like
a Fabry-Perot type nanotube electron waveguide.

A fundamental result in the theory of electronic trans-
port is that the conductance G of the SWNT electron
waveguide can be obtained by the Landauer formula

G =
2e2

h
T , (2)

with T , the transmission function, which can be expressed
in terms of the Green’s functions of SWNT and the cou-
pling coefficients of the SWNT to the leads [15,16]:

T = Tr(ΓLGr
CΓRGa

C), (3)

here G
{r,a}
C are the retarded and advanced Green’s func-

tions of the SWNT, and Γ{L,R} are the coupling of the
SWNT to the leads. The Green’s function for the SWNT
can be explicitly written as

GC(ε) = (ε − HC − ΣL − ΣR)−1, (4)

where ΣL = h†
LCgLhLC and ΣR = hRCgRh†

RC are the
self-energy terms due to the semi-infinite leads, hLC and
hRC are the coupling matrices that will be nonzero only
for adjacent points between the SWNT and the leads, and
g{L,R} = (ε − H{L,R})−1 are the Green’s functions of the
leads. The coupling functions Γ{L,R} can be easily ob-
tained by the following formula [17]

Γ{L,R} = i
[
Σr

{L,R} − Σa
{L,R}

]
. (5)

Following the method of references [13,18], we obtain
ΣL = h†

LCT and ΣR = hCRT . Here T and T are the
appropriate transfer matrices, which are easily computed
from the Hamiltonian matrix elements via an iterative
procedure [12,18]

T = t0 + t̃0t1 + t̃0 t̃1t2 + . . . + t̃0t̃1t̃2 . . . tn, (6)

T = t̃0 + t0 t̃1 + t0t1t̃2 + . . . + t0t1t2 . . . t̃n, (7)

where ti and t̃i are defined via the recursion formulas:

ti = (I − ti−1t̃i−1 − t̃i−1ti−1)−1t2i−1, (8)

t̃i = (I − ti−1t̃i−1 − t̃i−1ti−1)−1t̃2i−1, (9)

and

t0 = (ε − HC)−1h†
LC , (10)

t̃0 = (ε − HC)−1hCR. (11)
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Fig. 1. Conductance G (in units of G0) of (5,5) armchair

SWNT vs. effective gate-voltage eV
(eff.)

g with L = 100 nm,
α = 0.70 (up); and L = 200 nm, α = 0.70 (down).

The process is repeated until tn, t̃n ≤ δ with δ arbitrarily
small [12,18].

We have calculated the conductance of the electron
waveguides of metallic SWNTs at zero temperature and
zero bias. The conductance G versus the Fermi en-
ergy EF (EF can be changed by the applied effective gate-
voltage V eff .

g , hence we use eV eff .
g to represent the Fermi

energy EF relative to charge neutrality energy point.) for
the (5,5) tube are shown in Figure 1 to Figure 2 and (9,0)
tube shown in Figure 3, respectively, which illustrate sev-
eral characteristics shared by all metallic SWNTs. First,
all the metallic SWNTs electron waveguides exhibit pro-
nounced fast oscillations with the maximum conductance
approaching 2G0, the result fast conductance oscillations
period ∆E ≈ 0.0093 eV for the resonator length L =
200 nm (the length in the experiment) and ∆E ≈ 0.019 eV
for L = 100 nm coincides very well with that of the ex-
periment and previous theoretical prediction [8,19], show-
ing the metallic SWNTs really have two channels and the
fast conductance oscillations period is proportional to L−1

which is the manifestation of electron scattering occurring
only at the SWNT-electric contact interface and passing
through SWNT ballistically. Second, the conductance os-
cillation behavior shown in the G ∼ eV eff .

g plots is quite
different between the armchair and zigzag SWNT electron
resonators, slowly oscillating envelope of the fast oscilla-
tions with the Fermi energy eV eff .

g is very clear in Figures 1
and 2. but none in Figure 3. In fact, all metallic SWNT
resonators have the slow oscillation background except the
zigzag ones. As the chiral angle θ is bigger enough to make
the slow oscillation period ∆E0 be smaller than the mea-
sured energy interval ∆E in the experiments, the slow
oscillation background will be observed. Third, the ratio
of the slow oscillation period and fast oscillation period
is independent of the coupling strength of the SWNT and
electric contact, but is relevant to the SWNT length L (see
Figs. 1 and 2). Forth, all (3N+1)-unit length electron res-

Fig. 2. Conductance G (in units of G0) of (5,5) armchair

SWNT vs. effective gate-voltage eV
(eff.)

g with N = 406 lay-
ers, α = 0.70 (up); and N = 814 layers, α = 0.70 (down).

onators(for armchair tubes considered here, a repeat unit
is defined as two carbon layers along the length of the nan-
otube), the oscillations tends to disappear near the charge
neutrality energy point. This result can be understood
that the corresponding length of SWNT is integer mul-
tiple of the electron wave-length, which is 3a (a =

√
3acc,

acc = 1.42 Å is the length of carbon bond) at this en-
ergy point. The interfacial scattering will be weak as the
standing wave condition is satisfied, so will the conduc-
tance oscillations. The (3N+1) rule result also functions
in the conductance of carbon nanotubes based magnetic
tunnel junctions [20]. Fifth, as there is no impurity and
disorder in our calculation, so the slow and fast oscillations
is the property of intrinsic quantum interference. The de-
fect and disorder on carbon nanotube will of course effect
the structure and transport properties of SWNT [21–23],
we also calculated the conductance of the system with de-
fect and disorder in the perfect contacted case, however,
no regular slow oscillations appeared, indicating the slow
oscillation is independent of the defect or disorder [24]. In
addition to the fast and slow oscillations described above,
we can see from Figure 1 to Figure 3 that the fast and slow
oscillations superimposed on a slower oscillation fluctua-
tions too, which reveals that the conductance of SWNT
resonators have more subtle structure, which are resulted
from the electrical contacts coupling and higher nonlinear
term in energy dispersion relation.

The fast oscillations can be understood by the discrete
‘particle-in-a box’ electronic states, and the fast oscilla-
tion period is determined by [7,8,19] ∆E ≈ (dE

dk )∆k =
hVF

2L ≈ (1.68 eVnm)
L . ∆E = 0.0084 eV for L = 200 nm and

∆E = 0.0168 eV for L = 100 nm. In reference [8] the
gate-voltage period of the fast conductance oscillations is
∆V = 0.2 eV with its effective gate-voltage coefficient
α = 0.05, the experimental fast oscillations period ∆E =
0.01 eV match our calculations results ∆E = 0.093 eV. To
understand the slow oscillations, we need use the energy
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Fig. 3. Conductance G (in units of G0) of (9,0) armchair

SWNT vs. effective gate-voltage eV
(eff.)

g with L = 100 nm,
α = 0.70 (up); and L = 200 nm, α = 0.70 (down).

dispersion relation near Fermi energy (see Figs. 4 and 5
for representatives)

eV eff .
g = ±Vppπ

{
1 − 2 cos

(
ka

2

)}
,

(for armchair metallic SWNTs)

eV eff .
g = ±2Vppπ sin

(√
3ka

4

)
.

(for zigzag metallic SWNTs). (12)

Up to second order of eV eff .
g and VF =

√
3aVppπ

2�
, the

two forward propagating wave vectors k1 and k2 are
obtained [13]:
For the armchair metallic SWNT resonators

k1
.=

2π

3a
+

eV eff .
g

�VF
+

√
3a

12

(
eV eff .

g

�VF

)2

, (13)

k2
.= −2π

3a
+

eV eff .
g

�VF
−

√
3a

12

(
eV eff .

g

�VF

)2

. (14)

For the zigzag metallic SWNT resonators

k1 ≡ k2
.=

eV eff .
g

�VF
. (15)

Since the electrical contacts and SWNT coupling in-
teraction, the electronic wave packets will be partially
scattered into another channel on the interfaces. The un-
scattered parts of one channel are independent of those
of another channel. However, the scattered parts of two
channels are coupled, and quantum interference may take
place between them. For perfect contacted SWNTs, the
two channel are independent and the conductance of

Fig. 4. Energy dispersion relation of (5,5) SWNT around
Fermi energy.

the system is 2G0 = 4e2

h . In the near-perfect contacted
case of SWNT electron resonators, the quantum interfer-
ence between electrical wave of one channel will result
in conductance fast oscillations: A wave injected from a
channel will be transmitted to the same channel, form-
ing a series of transmitted partial waves, each of which
differs from the previous one by two extra reflections
plus a round trip between the barriers. The phase dif-
ference between two neighbor partial waves is 2k1L (or
2k2L), and the phase change due to gate-voltage varia-

tion will be δϕ
.= 2Le∆V eff .

g

�VF
. This relation can well ex-

plain the experimental results [7,8]. And quantum inter-
ference among the scattered parts of two channels will
induce slow oscillated background. Scattered wave incom-
ing from one channel can be transmitted into another
channel, the phase difference between two neighbor par-
tial wave pertaining to different channels is 2(k1 − k2)L,
and the phase change coming from gate-voltage variation
is δϕ

.= 2
√

3La
3 ( e

�VF
)2V eff .

g ∆V eff .
g , result in a slow oscilla-

tions background with the rapid oscillations superimposed
on it. And the slow oscillations period ∆Vg is inverse pro-
portional to Vg, independent of coupling strength but rel-
evant to the tube length, this result can be seen from Fig-
ure 1 to Figure 2 clearly. The coupling strength can change
the ratio of scattered wave part, with the higher terms of
the energy dispersion relation, result in subtle structure
in conductance curve as seen in Figures 1 and 2. As for
the zigzag metallic SWNT electron resonators, since the
energy dispersion relations of two channels are always the
same, the slow oscillations of conductance will of course
not appear (see Fig. 3).

In conclusion, our calculations show that all metallic
SWNT resonators have slow oscillations except the zigzag
ones, which are independent of the localized states due to
the imperfections; The ratio of slow oscillations and fast
oscillations is independent of the coupling strength but rel-
evant to the tube length and the gate-voltage; Both rapid
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Fig. 5. Energy dispersion relation of (9,0) SWNT around
Fermi energy.

and slow conductance fluctuations are quantum interfer-
ence phenomena, but the former comes from linear terms
in the energy dispersion relations of metallic nanotubes,
while the latter from nonlinear ones. The SWNT electron
waveguide is found to have distinctly different transport
behavior depending on whether or not the length of the
tube is commensurate with a (3N + 1) rule, with N the
number of basic carbon repeat units along the nanotube
length.
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